Skip to main content

Conservation of Energy and Power

Mahi Tuatahi 🔗

a) Calculate the electric field strength between the plates, and state its direction. (A)


Whakatika 🔗

$$ \begin{aligned} & V=20000V, d=0.05m && \text{(K)} \newline & E = ? && \text{(U)} \newline & E = \frac{V}{d} && \text{(F)} \newline & E = \frac{20000V}{0.05m} = 400000Vm^{-1} && \text{(S+S)} \newline & \text{Direction: from anode (+ve) to cathode (-ve)} \end{aligned} $$


b) State what type of energy an electron would have at the cathode (negative plate), and what would happen to that energy as the electron moved towards the anode (positive plate). (M)


Whakatika 🔗


c) Calculate the speed of the electron as it reaches the anode (positive plate). (M)


Whakatika 🔗

The field does work on the particle, so it loses energy:

$$ \begin{aligned} & E=400000Vm^{-1}, q=-1.6\times10^{-19}C, d=0.05m && \text{(K)} \newline & E_{p}=W=? && \text{(U)} \newline & E_{p} = W = Fd = Eqd && \text{(F)} \newline & W = 400000Vm^{-1} \times (-1.6\times10^{-19}C) \times 0.05m = -3.2\times10^{-15}J && \text{(S+S)} \end{aligned} $$


Assuming no friction (conservation of energy), all $E_{p}$ converted to $E_{k}$:

$$ \begin{aligned} E_{p} &= E_{k} \newline -3.2\times10^{-15}J &= \frac{1}{2}mv^{2} \newline v &= \sqrt{\frac{2\times(-3.2\times10^{-15})}{9.11\times10^{-31}}} = 8.39\times10^{7}ms^{-1} \end{aligned} $$


Styrofoam Balls 🔗