Kinematic Equations

12PHYS - Mechanics

Finn Le Sueur

2024

Mahi Tuatahi

Head up your book with the title: Kinematics

Try and solve this problem:

A car initially travelling at \(13ms^{-1}\) rolls down a straight slope, accelerating at \(0.6 ms^{-2}\) for \(10 s\). How far does the car travel in this time?

Te Whāinga Ako

  1. Be able to use 5 kinematic equations to solve problems.

Write the date and te whāinga ako in your book

Kinematic Equations

Five variables - five equations!

\[ \begin{aligned} v_{f} &= v_{i} + at \cr d &= \frac{v_{i} + v_{f}}{2}t \cr v_{f}^{2} &= v_{i}^{2} + 2ad \cr d &= v_{i}t + \frac{1}{2}at^{2} \cr d &= v_{f}t - \frac{1}{2}at^{2} \end{aligned} \]

On your whiteboard re-arrange each equation for each different variable, the add the manipulated form to your sheet!

Pātai Tahi

Let’s try that starter question again. A car initially travelling at \(13ms^{-1}\) rolls down a straight slope, accelerating at \(0.6 ms^{-2}\) for \(10 s\). How far does the car travel in this time?

\[ \begin{aligned} & && \text{Knowns} \cr & && \text{Unknowns} \cr & && \text{Formula} \cr & && \text{Sub and Solve} \end{aligned} \]

Step One – “knowns”

A car initially travelling at \(13ms^{-1}\) rolls down a straight slope, accelerating at \(0.6 ms^{-2}\) for \(10 s\). How far does the car travel in this time?

\[ \begin{aligned} v_{i} &= 13ms^{-1}, a=0.6ms^{-2}, t=10s && \text{Knowns} \cr & && \text{Unknowns} \cr & && \text{Formula} \cr & && \text{Sub and Solve} \end{aligned} \]

Step Two – “unknowns”

A car initially travelling at \(13ms^{-1}\) rolls down a straight slope, accelerating at \(0.6 ms^{-2}\) for \(10 s\). How far does the car travel in this time?

\[ \begin{aligned} v_{i} &= 13ms^{-1}, a=0.6ms^{-2}, t=10s && \text{Knowns} \cr d &= ? && \text{Unknowns} \cr & && \text{Formula} \cr & && \text{Sub and Solve} \end{aligned} \]

Step Three – “formula”

Which formula includes the three knowns and one unknown?

\[ \begin{aligned} v_{i} &= 13ms^{-1}, a=0.6ms^{-2}, t=10s && \text{Knowns} \cr d &= ? && \text{Unknowns} \cr d &= v_{i}t + \frac{1}{2}at^{2} && \text{Formula} \cr & && \text{Sub and Solve} \end{aligned} \]

Step Four - “substitute”

\[ \begin{aligned} v_{i} &= 13ms^{-1}, a=0.6ms^{-2}, t=10s && \text{Knowns} \cr d &= ? && \text{Unknowns} \cr d &= v_{i}t + \frac{1}{2}at^{2} && \text{Formula} \cr d &= 13 \times 10 + \frac{1}{2} \times 0.6 \times 10^{2} && \text{Sub} \end{aligned} \]

Step Five - “solve”

\[ \begin{aligned} v_{i} &= 13ms^{-1}, a=0.6ms^{-2}, t=10s && \text{Knowns} \cr d &= ? && \text{Unknowns} \cr d &= v_{i}t + \frac{1}{2}at^{2} && \text{Formula} \cr d &= 13 \times 10 + \frac{1}{2} \times 0.6 \times 10^{2} && \text{Sub} \cr d &= 130 + 30 = 160m \end{aligned} \]

Practice / Whakawai

  1. A windsurfer initially travelling at \(3 ms^{-1}\) is accelerated by a strong wind gust, at \(0.08 ms^{-2}\). What would be the windsurfer’s speed when he has travelled \(100 m\) since the wind gust started?
  2. What time does it take for an airplane to decelerate uniformly from \(120 ms^{-1}\) to a stop if the distance covered along the runway is \(1500 m\)?

\[ \begin{aligned} & && \text{Knowns} \cr & && \text{Unknowns} \cr & && \text{Formula} \cr & && \text{Sub and Solve} \end{aligned} \]

Whakatika Rua

\[ \begin{aligned} v_{i} &= 3ms^{-1}, a=0.8ms^{-2}, d=100m && \text{Knowns} \cr v_{f} &= ? && \text{Unknowns} \cr v_{f}^{2} &= v_{i}^{2} + 2ad && \text{Formula} \cr v_{f}^{2} &= 3^{2} + 2\times0.08\times100 && \text{Sub and Solve} \cr v_{f} &= \sqrt{144} = 12ms^{-1} \end{aligned} \]

Whakatika Toru

\[ \begin{aligned} v_{i} &= 120ms^{-1}, v_{f} = 0ms^{-1}, d=1500m && \text{Knowns} \cr t &= ? && \text{Unknowns} \cr d &= \frac{v_{i} + v_{f}}{2}t && \text{Formula} \cr 1500 &= \frac{120 + 0}{2}t && \text{Sub and Solve} \cr 1500 &= 60t \cr t &= \frac{1500}{60} = 25s \end{aligned} \]

Whakawai/Practice

  • Worksheet #5 (Q1, 2 and 3 only)
  • Homework booklet Q2, Q3, Q4, Q5a, Q6a-6b, Q7