Mahi Tuatahi 🔗
__Head up your book with the title:__ Kinematics
Try and solve this problem:
A car initially travelling at $13ms^{-1}$ rolls down a straight slope, accelerating at $0.6 ms^{-2}$ for $10 s$. How far does the car travel in this time?
Te Whāinga Ako 🔗
- Be able to use 5 kinematic equations to solve problems.
Write the date and te whāinga ako in your book
Kinematic Equations 🔗
Five variables - five equations!
$$ \begin{aligned} v_{f} &= v_{i} + at \cr d &= \frac{v_{i} + v_{f}}{2}t \cr v_{f}^{2} &= v_{i}^{2} + 2ad \cr d &= v_{i}t + \frac{1}{2}at^{2} \cr d &= v_{f}t - \frac{1}{2}at^{2} \end{aligned} $$
On your whiteboard re-arrange each equation for each different variable, the add the manipulated form to your sheet!
Pātai Tahi 🔗
Let’s try that starter question again. A car initially travelling at $13ms^{-1}$ rolls down a straight slope, accelerating at $0.6 ms^{-2}$ for $10 s$. How far does the car travel in this time?
$$ \begin{aligned} & && \text{Knowns} \cr & && \text{Unknowns} \cr & && \text{Formula} \cr & && \text{Sub and Solve} \end{aligned} $$
Step One – “knowns”
A car initially travelling at $13ms^{-1}$ rolls down a straight slope, accelerating at $0.6 ms^{-2}$ for $10 s$. How far does the car travel in this time?
$$ \begin{aligned} v_{i} &= 13ms^{-1}, a=0.6ms^{-2}, t=10s && \text{Knowns} \cr & && \text{Unknowns} \cr & && \text{Formula} \cr & && \text{Sub and Solve} \end{aligned} $$
Step Two – “unknowns”
A car initially travelling at $13ms^{-1}$ rolls down a straight slope, accelerating at $0.6 ms^{-2}$ for $10 s$. How far does the car travel in this time?
$$ \begin{aligned} v_{i} &= 13ms^{-1}, a=0.6ms^{-2}, t=10s && \text{Knowns} \cr d &= ? && \text{Unknowns} \cr & && \text{Formula} \cr & && \text{Sub and Solve} \end{aligned} $$
Step Three – “formula”
Which formula includes the three knowns and one unknown?
$$ \begin{aligned} v_{i} &= 13ms^{-1}, a=0.6ms^{-2}, t=10s && \text{Knowns} \cr d &= ? && \text{Unknowns} \cr d &= v_{i}t + \frac{1}{2}at^{2} && \text{Formula} \cr & && \text{Sub and Solve} \end{aligned} $$
Step Four - “substitute”
$$ \begin{aligned} v_{i} &= 13ms^{-1}, a=0.6ms^{-2}, t=10s && \text{Knowns} \cr d &= ? && \text{Unknowns} \cr d &= v_{i}t + \frac{1}{2}at^{2} && \text{Formula} \cr d &= 13 \times 10 + \frac{1}{2} \times 0.6 \times 10^{2} && \text{Sub} \end{aligned} $$
Step Five - “solve”
$$ \begin{aligned} v_{i} &= 13ms^{-1}, a=0.6ms^{-2}, t=10s && \text{Knowns} \cr d &= ? && \text{Unknowns} \cr d &= v_{i}t + \frac{1}{2}at^{2} && \text{Formula} \cr d &= 13 \times 10 + \frac{1}{2} \times 0.6 \times 10^{2} && \text{Sub} \cr d &= 130 + 30 = 160m \end{aligned} $$
Practice / Whakawai 🔗
- A windsurfer initially travelling at $3 ms^{-1}$ is accelerated by a strong wind gust, at $0.08 ms^{-2}$. What would be the windsurfer’s speed when he has travelled $100 m$ since the wind gust started?
- What time does it take for an airplane to decelerate uniformly from $120 ms^{-1}$ to a stop if the distance covered along the runway is $1500 m$?
$$ \begin{aligned} & && \text{Knowns} \cr & && \text{Unknowns} \cr & && \text{Formula} \cr & && \text{Sub and Solve} \end{aligned} $$
Whakatika Rua 🔗
$$ \begin{aligned} v_{i} &= 3ms^{-1}, a=0.8ms^{-2}, d=100m && \text{Knowns} \cr v_{f} &= ? && \text{Unknowns} \cr v_{f}^{2} &= v_{i}^{2} + 2ad && \text{Formula} \cr v_{f}^{2} &= 3^{2} + 2\times0.08\times100 && \text{Sub and Solve} \cr v_{f} &= \sqrt{144} = 12ms^{-1} \end{aligned} $$
Whakatika Toru 🔗
$$ \begin{aligned} v_{i} &= 120ms^{-1}, v_{f} = 0ms^{-1}, d=1500m && \text{Knowns} \cr t &= ? && \text{Unknowns} \cr d &= \frac{v_{i} + v_{f}}{2}t && \text{Formula} \cr 1500 &= \frac{120 + 0}{2}t && \text{Sub and Solve} \cr 1500 &= 60t \cr t &= \frac{1500}{60} = 25s \end{aligned} $$
Whakawai/Practice 🔗
- Worksheet #5 (Q1, 2 and 3 only)
- Homework booklet Q2, Q3, Q4, Q5a, Q6a-6b, Q7